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Abstract: In the era of machine learning, many psychological studies use machine learning
methods. Specifically, neural networks, a set of machine learning methods that exhibit
exceptional performance in various tasks, have been used on psychometric datasets for
supervised model fitting. From the computer scientist’s perspective, psychometric in-
dependent variables are typically ordinal and low-dimensional—characteristics that can
significantly impact model performance. To our knowledge, there is no guidance about
the sample planning suggestion for this task. Therefore, we conducted a simulation study
to test the performance of an NN with different sample sizes and the simulation of both
linear and nonlinear relationships. We proposed the minimum sample size for the neural
network model fitting with two criteria: the performance of 95% of the models is close to
the theoretical maximum, and 80% of the models can outperform the linear model. The
findings of this simulation study show that the performance of neural networks can be
unstable with ordinal variables as independent variables, and we suggested that neural
networks should not be used on ordinal independent variables with at least common
nonlinear relationships in psychology. Further suggestions and research directions are
also provided.

Keywords: neural networks; sample size; ordinal dataset; predictive performance;
reproducibility

1. Introduction

Neural networks (NNs), which are a collection of machine learning algorithms, draw
inspiration from the structure and functions of the human brain.

Neural networks with adequate width and depth—enabled by their hidden lay-
ers—can approximate any complex relationship between independent variables (IVs) and
the dependent variable (DV) (Cybenko, 1989). This universal approximation property
underpins their exceptional performance in tasks such as natural language processing
(Zalake & Naik, 2019) and image classification (Rawat & Wang, 2017), in which there are
complex features between the IVs and DV. In addition, NNs have been applied in diverse
fields such as cancer prediction (Daoud & Mayo, 2019), transportation (Xiong & Schneider,
1992), engineering (Matel et al., 2022), and psychology (Choi et al., 2020).

In the field of psychology, supervised NNs are often utilized to discern patterns in
psychological datasets (Witten et al., 2005). These NNs have not only pioneered a new
direction in fully leveraging high-dimensional data but have also enhanced the performance
of prediction tasks involving low-dimensional data, such as ordinal variables. Various
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studies by computer scientists have provided empirical evidence about the sample size
requirements for high-dimensional data (Cho et al., 2015; Haykin, 2009; Kavzoglu & Mather,
2003). However, there is a notable gap in the literature regarding empirical evidence on
sample size planning for fitting NN models with low-dimensional psychometric data,
particularly from a prediction stability perspective in psychology, despite its importance in
study design (Maxwell et al., 2008). Therefore, this study employs a Monte Carlo simulation
to provide empirical evidence on the predictive performance of supervised NNs across
various sample sizes and datasets, serving as a preliminary step in sample size planning.
In the following paragraphs, the term ‘NNs’ will refer exclusively to supervised neural
networks, with a primary focus on prediction.

This study is structured into four sections. The first section offers a general introduc-
tion to the application of NNs in psychology, emphasizing existing sample size planning
suggestions from previous studies. Following this, we introduce the design of our simula-
tion study, providing justifications and detailed descriptions for each step. The subsequent
section presents the simulation’s results, along with interpretations. Finally, this paper
concludes with a general discussion, highlighting this study’s contributions and limitations
and suggesting directions for further research.

1.1. Neural Network Application in Psychological Studies

NNs in psychology are typically applied to two categories of data for prediction
purposes: high-dimensional data and low-dimensional data.

First, the ability of NNs to analyze high-dimensional data, such as natural language
and video, has opened new possibilities for psychological research. For instance, Youyou
et al. (2015) employed a natural generic digital footprint (i.e., Facebook likes), while L.
Liu et al. (2016) used similar methods to analyze social media profile pictures. In another
study, Dufour et al. (2020) applied an NN to assess vocal stereotypes in individuals with
autism. The images in L. Liu et al. (2016) and vocal patterns in Dufour et al. (2020) were
transformed into high-dimensional datasets using natural language processing (Liddy,
2001) or convolutional methods (Romanyuk, 2016). These advances in NNs and automated
coding techniques are gradually replacing subjective human coding, enabling the creation
of valuable high-dimensional datasets that facilitate prediction tasks in psychology.

In addition, many psychological studies utilize ordinal variables from psychometric
scales (e.g., results from a 5-point Likert scale with values of 1, 2, 3, 4, or 5) as independent
variables in NN models. These ordinal variables are ordered categorically and typically
originate from psychometric scales with inherent measurement errors and self-correlation
(Bland & Altman, 1997). Compared to datasets in various disciplines used by computer
scientists, psychometric data generally exhibit lower dimensionality and higher measure-
ment error (Jacobucci & Grimm, 2020). NNs have been leveraged in these contexts to
outperform traditional regression methods (Yarkoni & Westfall, 2017). Suggested by Zeinal-
izadeh et al. (2015), NN models hold promise to learn and capture the behavior of highly
nonlinear systems with proper accuracy and low computational efforts. These advantages
cannot be achieved by common linearly structured models due to system nonlinearities
and complexities.

For example, Marshall and English (2000) used various six-point Likert variables
(from 0, indicating no risk, to 5, indicating high risk) to assess risk in child protective
services, with 12,978 lines of data. They found that the NN model achieved 81% accuracy,
outperforming the logistic regression model, which had 66% accuracy. Florio et al. (2009)
employed a three-point (i.e., 0, 1, and 2) developmental behavior checklist (Einfeld & Tonge,
1995) for predicting Autism Spectrum Disorder and found that the NN performed better
(ROC = 0.93) than logistic regression (ROC = 0.88) with a balanced sample size of 638.
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Zeinalizadeh et al. (2015) predicted bank customer satisfaction using a 51-item, five-point
scale from 436 randomly selected customers. They found that the NN had a lower mean
square error (MSE) than linear models (0.44 vs. 0.6).

However, the superior performance of neural network models relies heavily on hav-
ing an adequate sample size. Rajput et al. (2023) and Pecher et al. (2024) demonstrated
that insufficient sample sizes introduce randomness, which can undermine model stabil-
ity. Similarly, Rajput et al. (2023), Kavzoglu and Mather (2003) and Haykin (2009) have
shown that inadequate sample sizes during the model fitting process lead to unstable
performance. Consequently, ensuring a sufficient sample size is a critical consideration for
researchers employing neural networks in their studies. This issue will be elaborated on in
the next section.

1.2. Previous Studies in Neural Network Sample Size Planning

While numerous psychological studies already employ ordinal variables as IVs in
NN model fitting, there is limited empirical evidence available to help psychologists in
designing a study that aims to use NNs for model fitting. Consider a scenario in which a
group of psychologists wants to create a model that uses results from psychometric scales
to make predictions. They believe there are some nonlinear relationships between the IVs
and DV. Yet, they do not know what exactly those relationships are. Therefore, they want
to use an NN to fit this model. Then, one of the most crucial questions they need to address
is as follows: how many participants do they need to recruit?

Sample size planning is a crucial aspect of psychological research design. It ensures
sufficient power, controls the budget, and addresses other concerns in psychological re-
search (Maxwell et al., 2008). Various studies in the psychology discipline have provided
recommendations for sample size planning for psychometric data (Kiihberger et al., 2014),
focusing on the validity of different statistics, such as correlation (Schonbrodt & Perugini,
2013), mediation (Fritz & MacKinnon, 2007), and CFA indexes (Marsh et al., 1988). The
empirical evidence offered by these studies has supplied important guidelines for applied
researchers. Additionally, given that measurement error is common in psychometric scales
(Schmidt & Hunter, 1996), researchers have also developed numerous sample size plan-
ning techniques that take measurement error into account (Freedman et al., 1990; Levin
& Subkoviak, 1977). For example, Bonett and Wright (2015) provided suggestions on
the minimum sample size requirement for null hypothesis significance testing with the
criterion of a desirable level of power based on Cronbach’s alpha level. In the following
paragraph, we will review the sample size planning recommendations made by computer
scientists for NNs.

Numerous studies conducted by computer scientists have addressed the sample size
needed to fit various types of NN models (Alwosheel et al., 2018). Some rule-of-thumb
guidelines have been developed for high-dimensional data, but these suggestions are
inconsistent and stem from different perspectives. For instance, Cho et al. (2015) proposed
that the sample size needs to be at least 50 to 1000 times the number of DVs based on a
criterion of 99.5% multinomial accuracy. However, Kavzoglu and Mather (2003) suggested
that the sample size should be at least 10 to 100 times the number of IVs based on the same
criterion. In the meantime, these suggestions are based on findings from X-ray images or
high-resolution visible images provided by NASA, which makes it doubtful whether they
can applied to psychometric IVs.

Although a larger sample size can provide researchers with more confidence about
the NN performance estimation reported in the study (Yarkoni & Westfall, 2017), there is
no uniform sample size recommendation for fitting an NN (Rosenbusch et al., 2021).
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These suggestions stem from different dimensions, which can result in an order of
magnitude difference for a single study design. For instance, consider a scenario with three
categorical IVs, each with five categories, and the researcher wants to fit a DV using an NN
with three fully connected layers, each with 10 neurons. According to Cho et al. (2015), the
sample size should be between 750 and 15,000; according to Kavzoglu and Mather (2003),
it should be between 30 and 300; and according to Haykin (2009), a sample size of 600 is
needed. These suggestions are based on findings from X-ray images or high-resolution
visible images provided by NASA. While these recommendations may serve as references
for psychological studies analyzing high-dimensional data like natural languages (Zalake
& Naik, 2019) or images (Rawat & Wang, 2017), studies with such high-dimensional IVs
can easily achieve large sample sizes. For example, Youyou et al. (2015) used participants’
Facebook likes to predict their personalities. With Facebook’s permission, they collected
Facebook information from 86,220 participants.

Computer scientists have also conducted studies on how measurement error
(i.e., noise) in the independent variables influences the sample size requirement. However,
these studies mostly focus on voice and image independent variables (B. Liu et al., 2017;
Tripathi, 2021). Some computer scientists also believe that NNs are robust to measurement
error in independent variables (Zhang et al., 2018). The only study examining the influ-
ence of measurement error on NN models in psychological application research is work
conducted by Jacobucci and Grimm (2020) from a performance perspective. In their study,
they were concerned about whether the level of measurement noise (i.e., reliability of 0.3,
0.6, and 0.9) can influence the performance of the supervised machine learning model. A
Monte Carlo simulation study by Jacobucci and Grimm (2020) found that the performance
(i.e., R?) of the boosting method (Freund, 1998) cannot always outperform the linear model
even if there are interaction relationships between the IVs and DV. Meanwhile, they also
found that the nonlinear feature is difficult to learn for boosting models in cases with a
high measurement error level in the population.

In summary, although there are some studies on the sample size requirement for NN
prediction tasks, there is no applicable guideline for the minimum sample size requirement
when utilizing psychometric ordinal variables as IVs to make predictions about DVs of
interest to studies. Additionally, there is a growing trend for psychologists to adopt a
prediction perspective when reinterpreting psychological phenomena (Dwyer et al., 2018).
As a result, it is likely that more studies will be conducted using a supervised NN model
that fits ordinal IVs. Consequently, this study will use a Monte Carlo simulation to test the
sample size requirement for NN model fitting with Likert IVs. Two criteria will be used to
determine the sample size level: ensuring the performance of the NN model is stable in
replication and ensuring that the NN can outperform the linear model. Several factors are
included in this study: the number of IVs, the relationship between IVs and DVs, and the
coefficients in the model. The performance of the model will be evaluated based on these
two criteria separately, and two minimum sample size requirements (MSSRs) that meet
these criteria will be reported in the Results Section .

2. Design

In this section, we will discuss the simulation design of the IVs and DV at first. Then,
we will discuss the procedure of grid search, which is used to select the combination of
hyperparamerters of the NN. Finally, we will provide two criteria for a sufficient sample
size from different perspectives, with a pilot simulation to examine whether the criteria we
propose are applicable.
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2.1. Dataset Simulation Design

At first, we will discuss the simulation of the IVs and DV. In this study, we only include
Likert IVs and a continuous DV.

We use a similar design to Maxwell (2000). IVs are simulated from an N(3,1) normal
distribution and denoted as x1, x, . .. in the following paragraph. After that, x1,x, ... are
fixed by rounding up and the minimum is set at 1 and the maximum at 5; they will be
denoted as Xy, Xy, ... in the following paragraph. The lowercase of x1, xy, ... are the true
values behind the Likert scores, and the uppercase Xj, Xy, ... are the Likert scores observed
by the researchers. The error caused by the Likertized procedure (i.e., rounding up in this
case) is the only error included in the IVs in this study.

Three different numbers of IV conditions are included in this study, 3, 5, and 10, to
calculate the simulated DV. In all conditions, the IVs and DV have both linear and nonlinear
relationships in the simulated dataset. Suppose there is only a linear relationship between
the IVs and DV. The NN cannot outperform linear regression in this case. Based on the
Occam’s razor principle, linear regression, as a simpler model widely used in psychology,
should be chosen unless the NN model demonstrates better performance. Therefore, there
is no need to apply NNs when there is only a linear relationship in the population (Yarkoni
& Westtall, 2017). As a result, this study only includes the IV and DV condition that there is
both a linear and nonlinear relationship between them.

Nonlinear relationships are common in psychological studies (Richardson et al., 2017).
This study includes several kinds of nonlinear relationships: two-way interaction effects
(x4xp) (Mathieu et al., 2012), three-way interaction effects (x,x,x.:) (Dawson & Richter, 2006;
Wei et al., 2007), and quadratic effects (x?) (Guastello, 2001).

These nonlinear relationships are chosen as representative of the nonlinear relation-
ships included in this simulation study. With these three nonlinear relationships, we aim
at simulating datasets that have a complex relationship between the IVs and DV. Given
their robust ability to capture these nonlinear patterns, NNs are ideally suited for this task.
(Almeida, 2002). We expect that the NN can detect these nonlinear relationships in the
model fitting easily. Specifically, we include three levels of complexity of the nonlinear
relationship: simple, medium, and high.

In the simple complexity level of the nonlinear relationship, only two-way interac-
tion effects and linear relationships are included. In the medium complexity level of the
nonlinear relationship, interaction effects, quadratic effects (x?), and linear relationships
are included. In the high complexity level of the nonlinear relationship, interaction ef-
fects (x,x;), quadratic effects (x2), three-way interaction relationships (x,x;x.), and linear
relationships are included.

For three complexities with three IV numbers, there are nine conditions between the
IV and DV. The simulation method uses the study conducted by Li (2018) as a reference in
the design.

The simulation formula is as follows.

Simple complexity with three IVs:

Y = cof] X x1 4 cofp X xp 4 cofs X x3+ confy X xq X xp + confy X xp X x3+ coferr x N(0,1) (1)

Medium complexity with three IVs:

Y =cofy X x1 4+ cofy X xp+cofz X X3+ confy X x1 X xa + confy X x3 X x3 + confz x x%+conf4 X x%+coferr>< N(0,1) (2)

High complexity with three IVs:

Y =cofy X x1 +cofy X xp+cofs X x3+conf; X x1 X xp +confy X xo X x3+

confs x x5 + confy x x5 + confs x exp(x1) + coferr x N(0,1) (3)
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Simple complexity with five IVs:
Y = cofy X x1+cofy X Xp 4 cofs X x3+ confy X x1 X xp +confy x x4 X x5+ coferr x N(0,1) 4)
Medium complexity with five IVs:
Y = cofy X x1+cofp x X2+ cofs x x3+ confy X x1 x x2+ confp x x4 x x5+ confs x x3 + confy x x2 + coferr x N(0,1) (5)

High complexity with five IVs:

Y =cofy X x1+cofy X xp+cofs X x3+conf; X x1 X xp +confy X xq4 X x5+

confy x x3 + confs x x% + confy x exp(xy) +coferr x N(0,1) (6)
Simple complexity with ten IVs:

Y =cofy X x1+cofy X xp+cofz X x3+cofs X x4+ cofs X x5+

Cofe X Xg 4 confi X x7 X xg + confy X x9 X x10 4 coferr x N(0,1) (7)
Medium complexity with ten IVs:

Y =cofy x x1+cofa X xp3+cofs X x3+cofy X x4+ cofs X x5+
Cofe X X + confy X x7 X xg + confy X x9 X x10 4 confz x x§+conf4 X x102+coferr x N(0,1) (8)

High complexity with ten IVs:

Y =cofy X x1+cofy X x4+ cofs X x3+cofy X x4+ cofs X x5+ cofe X x6+

CONnfy X X7 X Xg 4 confy X xg X x19 + confz X x%+conf4 X x%0+conf5 X x9 4+ coferr x N(0,1) (9)

Here, x1 ... x19 are the IVs, Ys are DVs, cofy is the coefficient for linear relationships,
confy is the coefficient for nonlinear relationships, in which x = 1,2,3..., coferr is the
coefficient of the error, and N(0,1) is a random number simulated from a standard nor-
mal distribution.

Due to the time limitation in simulation, the orthogonal experimental design for item
coefficients can not be applied because the time consumption associated with this design
far exceeds the acceptable limits for the simulation, as this is a high-compute-intensive task,
which will be explained in detail later.

Therefore, we include two conditions for these two coefficients separately: small or
large. A coefficient with a small condition is simulated from a uniform distribution of
[0.1, 0.3], and a coefficient with a large condition is simulated from a uniform distribution
of [0.5, 1]. A gap between these two distributions is designed to explore the relationship be-
tween the MSSR and categorical coefficient conditions. All these coefficients are simulated
from a selected random seed and are saved in the supplementary document. There are
2 x 2 = 4 conditions of coefficients in total, in which each coefficient is simulated indepen-
dently by the conditions. This means a condition with small linear relationship coefficients
and large nonlinear relationship coefficients can be calculated by

Y =029 x x1 +0.28 X xp +0.13 X x3 + 0.61 X x1 X x3 + 0.7 X xp X x3 + 0.87 X x% +0.75; x x3 4+ coferr x N(0,1) (10)

Here, x1, x», x3 are the continuous IVs without Likertization and Y Is the simulated DV.

For all formulas in the Appendix A, coferr in the formula is the noise coefficient and
is a multiple with a number simulated by a normal distribution of N(0,1). There are three
levels of noise coefficients: 1,4, and 10. This design aims to add different levels of variance
that can not be explained (i.e., noise).
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To sum up, there are nine different kinds of relationships between the IVs and DV,
four different kinds of coefficients, and three different error levels in this study. As a result,
there are 144 conditions in this simulation. After Y is calculated with the true value of IVs
like x1,x3, ..., the DV Y will be combined with the corresponding IVs like X, Xy, ... to
create the dataset for NN model fitting. All these coefficients are simulated from a selected
random seed and are saved in a supplementary document.

Based on the design proposed above, we can calculate several statistics for the simula-
tion datasets. These statistics will be used in the next section to interpret the results.

The theoretical maximum explainable variance R? is calculated by a linear regression to
Y with all the items. For the example in (10), because X; is the best estimation of x; available
in the dataset, R% is calculated by the regression models with factors X;,X»,X3,X; X Xp,
X5 x X3, and X% in this sample. As all factors used to calculate Y are included in the model,
R? should be the theoretical maximum explainable variance.

In addition, we also calculate the prediction performance calculated by linear regres-
sion with all items included in the model, and we denote the variance that can be explained
as R?, in which [ stands for linear. In the sample, the R? is calculated with a linear regression
model that includes factors X1,Xp, and X3, which are all the items included in this study.
The performance of an ideal NN model should be expected to outperform R?.

2.2. Neural Network Design

Researchers have a high degree of freedom in designing NN model fitting (Donda
et al., 2022), particularly when it comes to selecting a combination of hyperparameters for
optimal performance. Hyperparameters are parameters that significantly influence the
model fitting process. However, unlike regular parameters, hyperparameters cannot be
determined during model fitting; they must be decided beforehand (Dwyer et al., 2018).

In practice, researchers can choose hyperparameters through grid search (Erdogan
et al., 2021) combined with cross-validation (Donda et al., 2022). Grid search is a technique
used in machine learning for hyperparameter tuning, where all possible combinations of
predefined hyperparameter values are evaluated to find the optimal settings for a model
(Erdogan et al., 2021). For each condition, the best combination of hyperparameters is
applied to the NN using this grid search. Below, we will provide a general introduction to
the hyperparameters included in the grid search, with a focus on how they can influence
the performance of the NN.

2.2.1. Neural Network Shape

The shape of the NN delineates its architecture in terms of the number of layers and
the number of neurons (or nodes) in each layer. It is a fundamental hyperparameter that
dictates the complexity and capacity of the model. An appropriate network shape is crucial:
too shallow or with few neurons might lead to underfitting, while too deep or with many
neurons can lead to overfitting and increased computational demands (Yu & Zhu, 2020).
In the meantime, the selection of shape influences the MSSR based on the research of
(Alwosheel et al., 2018). A larger sample size is needed if more neurons and layers are in
the NN model for a stable result (Haykin, 2009).

In this study, we consider only the simplest NN: a fully connected unidirectional NN,
which is the model used in Florio et al. (2009); Marshall and English (2000); Zeinalizadeh
et al. (2015). Therefore, we include the conditions of (10), (10, 10), and (10, 10, 10) for the NN.
For instance, (10, 10) means there are two fully connected hidden layers with 10 neurons in
each layer for the NN.

Based on our simulated dataset, a fully connected unidirectional neural network is
sufficient for this prediction task. Yet, it should be mentioned that for more complex applica-
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tions, advanced architectures are preferable: Convolutional Neural Networks (CNNs) excel
with image and spatial data (Chua, 1997), while Recurrent Neural Networks (RNNs) are
ideal for handling sequential data (Khaldi et al., 2023) and language and context modeling
(Mikolov et al., 2011).

2.2.2. Learning Rate

The learning rate is a crucial hyperparameter in neural networks that determines the
step size during the optimization process. A suitable value ensures efficient convergence
during training, whereas values that are too large or too small can hinder model perfor-
mance by causing overshooting or slow convergence, respectively (Yu & Zhu, 2020). We
include three levels of learning rate in this search, 0,0001, 0.001, and 0.01 (Ranganath et al.,
2013; Wu et al., 2019), using the Adam gradient descent method (Kingma & Ba, 2014).

2.2.3. Patience

Patience determines the number of epochs the training process should wait without ob-
serving improvement in a chosen metric before halting the training (Terry et al., 2021). This
prevents overfitting and can potentially reduce training time. We include three levels of pa-
tience in this search: 5, 10, and 15 (Chen et al., 2022; Franchini et al., 2022; Ho et al., 2021).

2.2.4. Batch Size

Batch size refers to the number of training examples utilized in one iteration. It plays
a pivotal role in optimizing the training process, influencing the model’s generalization
ability, training speed, and convergence (Yu & Zhu, 2020). While smaller batches can
provide a regularizing effect and lower generalization error, larger batches can accelerate
the learning process by leveraging computational efficiencies. We include three levels of
batch size in this search: 32, 64, and 128 (Kandel & Castelli, 2020; Peng et al., 2018; Yong
et al., 2020; You et al., 2017).

An orthogonal design was used in this search, which means there were3 X 3 x 3 x 3 = 81
combinations of hyperparameters in the search. With cross-validation, the combination
of hyperparameters with the best performance on the validation dataset was selected. As
a result, this is a computationally intensive task. For each combination of hyperparame-
ters, ten NN models will be fitted, and each replication in a single simulation involves 81
hyperparameter combinations.

2.3. Criteria for Adequate Sample Size in Neural Network Model Fitting

In this study, we use two criteria for determining the MSSR: we want the majority of
the predictive performances of the NN in 1000 replications to be close to the maximum
performance, and we want the majority of the predictive performances of the NN in
1000 replications to outperform linear regression.

2.3.1. The Criterion Based on the Theoretical Maximum Performance

There are existing Monte Carlo simulation studies aiming to estimate the influence
of sample size on the performance of linear regression in psychological studies. Linear
regression is a commonly used prediction method for continuous IVs in psychology. As
supervised NNs are also used for prediction, the criteria of these existing studies can be
used as a reference.

For example, Riley et al. (2019) proposed four criteria for a stable performance of linear
regressions: (i) small optimism in predictor effect estimates as defined by a global shrinkage
factor of larger than 0.9; (ii) small absolute difference of less than 0.05 in the apparent and
adjusted RZ; (iii) precise estimation (a margin of error less than 10% of the true value) of
the model’s residual standard deviation; and, similarly, (iv) precise estimation of the mean
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predicted outcome value (model intercept). Except for the second criterion, none of the
other criteria can be applied to the performance of the NN.

Therefore, we propose a criterion for this study based on the design discussed in
Riley et al. (2019), with some modifications for Monte Carlo simulation. We expanded the
absolute value and doubled the tolerance range from 0.05 to 0.1. For an adequate sample
size, we expect that 95% of NNs in the simulation will have a performance that will meet
the criterion of

Ry 50, — R3 50, < 0.1 (11)

Here, R57_5% is the 97.5% percentile of R? in the simulation; R%'S% is the 2.5% percentile
of R? in the simulation.

With this design, we aim to find an MSSR for the NN that ensures that most of the
NN models neither overperform nor underperform in relation to R?. As noted earlier,
R? is computed using the model that simulated the DV. Consequently, R? represents the
theoretical upper bound of performance. In the following paragraphs, we will refer to this
criterion as the criterion based on the theoretical maximum performance.

2.3.2. The Criterion Based on Outperforming of the Linear Model

We also propose another criterion: the NN model should outperform the linear
regression model. We propose this metric for these two reasons:

1: Based on the Occam’s razor principle, if a complex model like an NN cannot
outperform the simple linear model, the NN model should not be chosen, as the linear
regression model offers a simpler interpretation. Psychological researchers also suggest
that the performance of the supervised machine learning fitted model should be com-
pared with the performance of the linear model in psychological research to make a
binary decision on whether to use the supervised machine learning method in a study
(Rosenbusch et al., 2021).

2: Given that there are both linear and nonlinear relationships between the IVs and
DV in this simulation study, the NN should outperform the linear model.

Therefore, we aim to find an MSSR such that 80% of the NN models can outperform
the linear model, which is calculated by including all the items linearly in a regression. The
performance of the linear model is calculated with a sample size of 100,000. An adequate
sample size should make 80% of R? > R% . In the following paragraph, we will call this
criterion the criterion based on outperforming the linear model.

2.4. General Simulation Design

The whole simulation study was conducted in Python (Pilgrim & Willison, 2009),
with the packages Tensorflow (Abadi et al., 2016) and Keras (Chollet, 2023). We included
sample sizes of 1000, 2500, 5000, 10,000, and 20,000. If either of the two criteria could not be
met with a sample size of 20,000, we then tested additional sample sizes of 25,000, 30,000,
35,000, 40,000, 45,000, and 50,000, one after another. If a sample size of 50,000 was still
insufficient to meet either of the two criteria, we considered the sample size requirement
for this criterion in this condition as unattainable.

After the dataset was simulated, 80% of the simulated data were randomly assigned
to the training dataset, and the rest were assigned to the testing dataset. In total, 20% of
the training dataset was randomly assigned as the validation dataset for the hyperparam-
eters selection by grid search. All the performance reported in the study is based on the
performance of the model on the testing dataset.
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3. Results

The full results for all sample sizes are provided in the supplementary document.
A selection of these results is presented in Table 1. The MSSR based on the theoretical
maximum performance is identified, and the MSSR based on outperforming the linear
model is provided in Table 2.

Below, we will discuss the MSSR results provided by the two criteria. We will report
Spearman’s correlation coefficients between the MSSR and the rank factors included in
this simulation study. Both the correlation coefficients and the p-values will be provided.
However, we emphasize that these p-values should be viewed as a reference only, given
the low sample size in these tests (Cumming, 2014).

Table 1. A selection of full results.

Cond 1 19 26 38 98
Lp1000 0.9392 0.7884 0.4269 0.9590 0.1774
Lp2500 0.9618 0.8928 0.6477 0.9750 0.5197
Lp5000 0.9726 0.9197 0.7760 0.9815 0.6566

Lp10000 0.9813 0.9454 0.8486 0.9882 0.7479
1p20000 0.9882 0.9620 0.8885 0.9924 0.8455
Lp25000 0.9649 0.9023 0.8424
Lp30000 0.9667 0.9111 0.8538
Lp35000 0.9714 0.9090 0.8593
Lp40000 0.9706 0.9258 0.8808
Lp45000 0.9748 0.9208 0.8697
Lp50000 0.9765 0.9312 0.8761
Up1000 1.0325 1.1462 1.3220 1.0173 1.4159
Up2500 1.0197 1.0977 1.1837 1.0110 1.2486
Up5000 1.0155 1.0632 1.1413 1.0094 1.1807
Up10000 1.0124 1.0480 1.0929 1.0064 1.1430
Up20000 1.0084 1.0337 1.0710 1.0052 1.0994
Up25000 1.0276 1.0553 1.0679
Up30000 1.0272 1.0568 1.0578
Up35000 1.0248 1.0439 1.0480
Up40000 1.0221 1.0437 1.0488
Up45000 1.0221 1.0424 1.0457
Up50000 1.0213 1.0410 1.0463
Abovel000 0.6260 0.2780 0.1710 0.5810 0.3970
Above2500 0.8640 0.3110 0.0880 0.8860 0.3190
Above5000 0.9720 0.4210 0.1250 0.9740 0.2350
Abovel0000 0.9950 0.4820 0.1830 0.9940 0.2050
Above20000 0.9980 0.5870 0.4050 0.9990 0.2250
Above25000 0.7110 0.6430 0.1660
Above30000 0.7950 0.7010 0.1460
Above35000 0.8000 0.7420 0.1500
Above40000 0.8630 0.7650 0.1400
Above45000 0.8910 0.8210 0.1670
Above50000 0.9120 0.8350 0.1540

Note: Cond refers to the condition selection as an example in this study, in which 1 stands for condition 1 in

Table 2, 19 stands for condition 19 in Table 2, 26 stands for condition 26 in Table 2, 38 stands for condition 38 in

Table 2, and 98 stands for condition 98 in Table 2; LPx, in which x is 1000, 2500, 5000, 10,000, 20,000, 30,000, 35,000,
2

40,000, 45,000, or 50,000, refers to the 2.5% percentile of the % ; Upx, in which x is 1000, 2500, 5000, 10,000, 20,000,
t

30,000, 35,000, 40,000, 45,000, or 50,000, refers to the 97.5% percentile of the %, and the criterion based on the

t

theoretical maximum performance is calculated by the Lpx and Upx; and Abovex, in which x is 1000, 2500, 5000,

10,000, 20,000, 30,000, 35,000, 40,000, 45,000, or 50,000, refers to the percentage of R% > R12 in 1000 replications.

The missing value in sample sizes of 30,000, 35,000, 40,000, 45,000, and 50,000 means that a sample size that can

satisfy both criteria can be found in a sample size of 1000, 2500, 5000, 10,000, or 20,000.
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Table 2. Simulation results of the minimum sample size requirement and intervals of 1000 sam-
ple size.

Cond Complex Linear  Nonliner Error  IVnumber R? MSSRR MSSRA

1 1 1 1 1 3 0.7193 1000 2500
2 2 1 1 1 3 0.8335 1000 5000
3 3 1 1 1 3 0.8764 1000 1000
4 1 1 2 1 3 0.8639 1000 1000
5 2 1 2 1 3 0.9009 1000 1000
6 3 1 2 1 3 0.9042 1000 1000
7 1 2 1 1 3 0.8161 1000 5000
8 2 2 1 1 3 0.8546 1000 5000
9 3 2 1 1 3 0.8968 1000 1000
10 1 2 2 1 3 0.8941 1000 2500
11 2 2 2 1 3 0.9052 1000 2500
12 3 2 2 1 3 0.9066 1000 2500
13 1 1 1 4 3 0.2422 20,000 20,000
14 2 1 1 4 3 0.3789 10,000 20,000
15 3 1 1 4 3 0.7144 1000 1000
16 1 1 2 4 3 0.6901 1000 2500
17 2 1 2 4 3 0.7918 1000 2500
18 3 1 2 4 3 0.8792 1000 1000
19 1 2 1 4 3 0.3228 10,000 40,000
20 2 2 1 4 3 0.4658 5000 20,000
21 3 2 1 4 3 0.6600 1000 5000
22 1 2 2 4 3 0.6840 1000 5000
23 2 2 2 4 3 0.8456 1000 20,000
24 3 2 2 4 3 0.8779 1000 1000
25 1 1 1 10 3 0.0273 X X
26 2 1 1 10 3 0.1006 X 45,000
27 3 1 1 10 3 0.3801 10,000 5000
28 1 1 2 10 3 0.2037 20,000 20,000
29 2 1 2 10 3 0.5920 2500 5000
30 3 1 2 10 3 0.7862 1000 1000
31 1 2 1 10 3 0.0571 X X
32 2 2 1 10 3 0.1021 X X
33 3 2 1 10 3 0.1788 20,000 35,000
34 1 2 2 10 3 0.2720 10,000 20,000
35 2 2 2 10 3 0.4595 5000 10,000
36 3 2 2 10 3 0.7874 1000 1000
37 1 1 1 1 5 0.6414 2500 10,000
38 2 1 1 1 5 0.8140 1000 2500
39 3 1 1 1 5 0.8874 1000 1000
40 1 1 2 1 5 0.8615 1000 2500
41 2 1 2 1 5 0.8997 1000 2500
42 3 1 2 1 5 0.9019 1000 2500
43 1 2 1 1 5 0.7892 1000 5000
44 2 2 1 1 5 0.8416 1000 10,000
45 3 2 1 1 5 0.8809 1000 2500
46 1 2 2 1 5 0.8772 1000 2500
47 2 2 2 1 5 0.8988 1000 2500
48 3 2 2 1 5 0.9034 1000 1000
49 1 1 1 4 5 0.0901 X X
50 2 1 1 4 5 0.2098 20,000 30,000
51 3 1 1 4 5 0.5490 5000 2500
52 1 1 2 4 5 0.5162 5000 5000
53 2 1 2 4 5 0.7472 1000 2500
54 3 1 2 4 5 0.8655 1000 2500
55 1 2 1 4 5 0.1650 20,000 X
56 2 2 1 4 5 0.4475 2500 20,000
57 3 2 1 4 5 0.5848 2500 5000
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Table 2. Cont.

Cond Complex Linear Nonliner Error IVnumber  R? MSSRR MSSRA

58 1 2 2 4 5 0.5867 2500 10,000
59 2 2 2 4 5 0.7823 1000 2500
60 3 2 2 4 5 0.8758 1000 2500
61 1 1 1 10 5 0.0236 X X
62 2 1 1 10 5 0.1009 50000 X
63 3 1 1 10 5 0.2910 10,000 10,000
64 1 1 2 10 5 0.1678 25,000 20,000
65 2 1 2 10 5 0.4803 5000 10,000
66 3 1 2 10 5 0.7546 1000 1000
67 1 2 1 10 5 0.0450 X X
68 2 2 1 10 5 0.0875 X X
69 3 2 1 10 5 0.2500 20,000 20,000
70 1 2 2 10 5 0.2405 20,000 20,000
71 2 2 2 10 5 0.4895 5000 10,000
72 3 2 2 10 5 0.7649 1000 2500
73 1 1 1 1 10 0.5467 2500 20,000
74 2 1 1 1 10 0.8163 1000 5000
75 3 1 1 1 10 0.8539 1000 2500
76 1 1 2 1 10 0.8735 1000 2500
77 2 1 2 1 10 0.8920 1000 2500
78 3 1 2 1 10 0.9017 1000 1000
79 1 2 1 1 10 0.7371 5000 50,000
80 2 2 1 1 10 0.8356 1000 10,000
81 3 2 1 1 10 0.8652 1000 5000
82 1 2 2 1 10 0.8596 1000 5000
83 2 2 2 1 10 0.8965 1000 5000
84 3 2 2 1 10 0.9039 1000 1000
85 1 1 1 4 10 0.0725 X X
86 2 1 1 4 10 0.3495 10,000 25,000
87 3 1 1 4 10 0.5593 5000 5000
88 1 1 2 4 10 0.4726 5000 10,000
89 2 1 2 4 10 0.7625 1000 5000
90 3 1 2 4 10 0.8517 1000 2500
91 1 2 1 4 10 0.2199 20,000 X
92 2 2 1 4 10 0.3829 10,000 40,000
93 3 2 1 4 10 0.6038 2500 10,000
94 1 2 2 4 10 0.5092 5000 20,000
95 2 2 2 4 10 0.7743 1000 10,000
96 3 2 2 4 10 0.8759 1000 2500
97 1 1 1 10 10 0.0180 X X
98 2 1 1 10 10 0.0509 X X
99 3 1 1 10 10 0.1588 40,000 X
100 1 1 2 10 10 0.0970 25,000 X
101 2 1 2 10 10 0.4152 5000 20,000
102 3 1 2 10 10 0.6640 2500 2500
103 1 2 1 10 10 0.0379 X X
104 2 2 1 10 10 0.1086 X X
105 3 2 1 10 10 0.1574 35,000 X
106 1 2 2 10 10 0.1875 20,000 X
107 2 2 2 10 10 0.4790 5000 10,000
108 3 2 2 10 10 0.6319 2500 5000

Note: ‘Cond’ refers to the condition in the simulation; ‘Complex’ indicates the complexity of the nonlinear
relationship between IVs and the DV, where ‘1’ signifies simple complexity, ‘2’ medium complexity, and ‘3" high
complexity; ‘Linear’ denotes the categorical linear coefficient level, with ‘1’ representing coefficients simulated
from the range of 0.1 to 0.3, and ‘2’ from 0.5 to 0.1; ‘Nonlinear’ refers to the categorical nonlinear coefficient level,
with “1” for coefficients from 0.1 to 0.3, and ‘2’ for coefficients from 0.5 to 0.1; ‘TVnumber’ refers to the number of
independent variables; ‘R?’ refers to the maximum variance that can be theoretically explained; ‘MSSRR’ refers
to the minimum sample size required for the stability of the performance criterion; and ‘MSSRA'’ refers to =the
minimum sample size for the criterion of outperforming the linear model, with an ‘X’ indicating that the necessary
sample size to meet this criterion cannot be found.
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3.1. Criterion Based on the Theoretical Maximum Performance

Based on my findings, an MSSR can be determined for most of the conditions in this
study, using the theoretical maximum performance as the criterion. The conditions where
stable performance close to R? in replication could not be found are mainly those with a
low R? (e.g., condition 25: R? = 0.0273).

For the conditions where an MSSR has been found using this criterion (N = 96), the
MSSR is positively correlated with error level (r = 0.5392, p < 0.001) and number of IVs
(r = 0.1035, p = 0.3181). The MSSR is negatively correlated with linear coefficients
(r = —0.066, p = 0.5255), complexity level (r = —0.136, p = 0.1886), and nonlinear coef-
ficients (r = —0.2611, p = 0.0106, and Rf (r=—0.832, p < 0.001). Moreover, if a researcher
aims to restrict the R? to within a margin of £0.05% using a sample size of 1000, the neural
network would need to explain 80% of the variance—a level of explanatory power that is
rarely achieved in psychological research.

3.2. Criterion Based on the Outperforming of the Linear Model

We have found unexpected results for the MSSR with this criterion. In all the conditions
simulated in this study, there are both linear and nonlinear relationships between the IVs
and DV. We expected the performance of the NN to be better than the linear model, as the
linear model can only fit the linear relationship between the IVs and DV. However, we
found that in only 89 out of 108 conditions, we could find an MSSR of less than 50,000
to ensure that 80% of the results provided by the NN were better than those provided by
linear regression. While previous research has shown that high measurement error levels
in the independent variable can linearize nonlinear relationships (Jacobucci & Grimm,
2020), we did not anticipate that the measurement error inherent in the Likert process
would be sufficient to cause neural network performance to mirror that of a linear model.
Furthermore, this measurement error may affect hyperparameter selection, thereby further
impacting the overall performance of the model (Tsamardinos et al., 2015).

The conditions where an MSSR could not be identified using this criterion all had an
R? < 0.1. These conditions also tended to have lower complexity and smaller nonlinear
coefficients.

For the conditions where an MSSR was found using this criterion (N = 90), MSSR
was positively correlated with error level (r = 0.37, p < 0.001), number of IVs (r = 0.14,
p = 0.5299), and linear coefficients (r = 0.11, p = 0.1956). MSSR was negatively correlated
with complexity level (r = —0.32, p = 0.002), nonlinear coefficients (r = —0.35, p < 0,0001),
and r; (r = —0.72, p < 0,0001).

In the meantime, the variance can be explained by the model (i.e., R2), which should
be inversely proportional to the width of the interval, based on both theoretical proof
and empirical evidence (Eng, 2003; Hazra, 2017). However, a universal constant based on
this relationship cannot be found across all conditions. Therefore, we cannot provide a
rule-of-thumb formula for researchers to use for NN sample size planning based on the
simulation results of this study.

4. Discussion, Limitations, and Further Directions

This study was expected to offer guidance regarding the necessary sample size for
fitting NN models with psychometric data. However, we found that meeting both criteria
is challenging unless the sample size is quite large: a stable result close to the maximum
theoretical performance cannot be achieved even with a sample size of 10,000 in some
conditions when using the NN. In other conditions, even a stable performance cannot be
reached with a sample size of 50,000. This indicates that the NN requires a very large
sample size to learn some common nonlinear relationships in psychology. Therefore, based
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on the results of this study, we do not recommend using an NN for at least some prediction
tasks with ordinal IVs.

Specifically, NNs should not be applied to datasets with a high level of inexplicable
noise. In these datasets, a sample size of 50,000 is insufficient to meet the criteria proposed in
this study. We advise against fitting NN models to datasets where only low performance is
achievable. This recommendation is not because an NN model cannot outperform classical
regression in these conditions; in fact, good performance can sometimes be observed due to
sampling error. However, this instability is precisely why we advise against this application.
While an NN model may dramatically outperform the linear regression model in the testing
dataset due to sampling error, we cannot confidently expect a replication study with the
same sample size (i.e., 1000) to yield a similar performance advantage.

By making this statement, we are critiquing the reproducibility of NNs with psychome-
tric data unless the sample size is large enough. While psychologists consider performance
estimation from independent testing datasets with cross-validation as more reliable and
view it as a potential solution to the replication crisis (Koul et al., 2018; Rooij & Weeda,
2020), this study found that the results provided by the NN may not be replicable even
when the training/testing dataset division is applied, unless an adequate sample size is
available. However, if a necessary sample size can be recruited for a study, researchers can
identify nonlinear relationships using developed methods like Jaccard et al. (1990), and a
regression model with nonlinear terms can be conducted, which eliminates the necessity of
using an NN.

To the best of our knowledge, researchers may still want to apply NNs to predict
factors of interest in studies with psychometric IVs if they believe that the relationships
between IVs and DVs are complex, cannot be captured by an analytical formula, or are
far from linear relationships, such as exponential (¢*) relationships (Guastello, 2001). In
the meantime, NNs may still be useful to provide stable performance in the case that the
reliability of IVs is high (i.e., the measurement error of IVs is at a low level). Yet, more
research should be conducted in this field. In addition, CNNs or RNNs can still be useful
when analyzing high-dimensional data, such as images, as regression cannot deal with this
kind of high-dimensional data.

Regarding limitations and future directions, the most significant limitation of this
study is the restricted range of conditions examined. Future research should encompass
a broader variety of conditions for NN models and dataset designs. It is acknowledged
that simulating every possible condition of NN models in a single study is unfeasible.
Nevertheless, future studies should explore additional factors, such as different types of
relationships between IVs and DVs and varying sample size thresholds. Moreover, future
research should also consider scenarios involving binary or multinomial DVs. Unlike
multinomial logistic regression, NN algorithms do not necessitate the assumption of a linear
relationship between the IVs and the logit transformation of the DV. This characteristic
could be a potential advantage of NN models, offering a more flexible approach to handling
various data types and relationship dynamics.

However, researchers should be aware that this study utilized GPU boost with multi-
threading in simulation, employing 16 threads on a high-performance server, and still re-
quired five days to complete the simulation. Therefore, similar tasks can be time-consuming,
as we have mentioned above.

The discovery that NNs cannot provide stable results has sparked new consider-
ations regarding the choice of supervised machine learning methods, particularly for
low-dimensional ordinal IVs. While NNs are sophisticated and hold great potential for
predicting outcomes with high-dimensional IVs, psychologists might also explore other
advanced methods rooted in regression. Specifically, penalized linear regression algorithms,
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Appendix A. Formula of Simulations

Table Al. Glossary of variables.

Variable Names Meaning of the Variables

X; The simulated continuous IVs, which serves as the true value of IVs,
in which i stands for 1,2,3,...
The Likertized IVs from x_i, which serves as the observed value of

Xi 1Vs,

in which i stands for 1,2,3, ...
R? theoretical maximum explainable variance
R explainable variance by NN model
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