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Abstract. This article provides a brief introduction to the history and applications of the class of data 
analytic techniques collectively known as Structural Equation Modeling (SEM). Using an example 
based on psychological factors thought to affect the likelihood of stuttering, we discuss the issues of 
specification, identification, and model fit and modification in SEM. We also address points relating to 
model specification strategies, item parceling, advanced modeling, and suggestions for reporting SEM 
analyses.  It is noted that SEM techniques can contribute to the elucidation of the developmental 
pathways that lead to stuttering. Keywords: Structural equation modeling, LISREL, stuttering models. 

 
1. Introduction I. Multifactor models and stuttering 
     Without going into the nuances of the many definitions of stuttering that are available, the disorder 
involves difficulty in handling language and is usually manifest as problems in overt speech control. This 
does not necessarily mean that language problems are paramount and the sole cause of stuttering. The 
anxiety a speaker is experiencing, the situation in which he or she is interacting and so on will determine 
whether or not the speaker stutters at that particular time. 
     The aim of this paper is to establish how the multiple and various factors associated with stuttering 
behavior, work together in influencing stuttering. Before introducing the Structural Equation Modeling 
(SEM) technique, it is necessary to look at some of the issues and debates that have been raised in 
connection with the process of theory construction in the field of stuttering. This shows that more detailed 
specification of theories is needed before SEM can be employed as a way of implementing, assessing and 
evaluating alternative multifactor models of stuttering (the intention is that this article will stimulate work 
on both theory construction and evaluation). 
     The first thing to note is that there are several models of stuttering that are specified in detail that have 
been tested experimentally. In the main, these have been developed to try to explain how language 
influences speech-motor performance and how this then results in stuttering. Kolk and Postma’s (1997) 
covert repair hypothesis (CRH) offers one example. This explains stuttering in terms of a linguistic system 
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that can malfunction and produce errors which then affect speech-motor performance. Stuttering, according 
to CRH, can be characterized as the response an individual makes to linguistic errors, which produces 
different types of stuttering events (such as repetitions and prolongations) in overt speech (Smith, 1999). 
Put another way, stuttering is viewed by CRH as a linear causation process in which errors in the linguistic 
processes lead directly to observed problems in speech output (Smith, 1999). CRH does not concern itself 
with other factors that can influence stuttering. It is simply an account of the particular link between 
language processes and speech output behaviour. In tests that have been made of CRH, other factors that 
affect stuttering would have minimal influence provided good experimental practice is followed. An 
example of such practices can be seen for gender, which is known to affect stuttering behaviour, and 
language more generally. Any influences of gender per se can be controlled by selecting speakers of the 
same sex for both stuttering and control groups. It is not that CRH maintains that gender or other factors are 
not relevant to stuttering, simply that with suitable precautions, authors approaching their research from 
CRH’s perspective are able to focus on what interests them – the link between language processes and 
speech performance. 
     Second, also as a consequence of using experimental control principles, the problem of the relationship 
between language and speech output is simplified into one of linear causation. This does not imply that if 
other factors are added to the model, they too have to be placed at some point in a linear chain. If, for 
instance, CRH was extended to account for the effects of anxiety on stuttering, anxiety might influence the 
linguistic system directly by, for instance, increasing the likelihood that a speaker who stutters makes more 
errors in that system. Alternatively, anxiety might be one factor that increases overall arousal level, making 
speakers attempt utterances faster than they otherwise might. This could then, in turn, put pressure on both 
the linguistic and motor systems (if the linguistic system operates more rapidly, it may make more errors, 
Kolk and Postma, 1997; if the motor system executes speech plans more rapidly, it may show more 
variable performance, Smith and Kleinow, 2000). The arousal system might then be modeled as an 
independent parallel process that has indirect influences on both language and speech processes. If anxiety 
level is controlled, this nonlinear causal chain is reduced to a linear one for the purpose of study.  
     The third issue is whether there is only one appropriate measure of output behavior (the dependent 
variable). CRH focuses on events that are regarded as being associated with stuttering, such as the 
repetitions and prolongations mentioned earlier. These are suited to their authors’ aims where they wish to 
examine specifically the influence of the linguistic system on failures in speech output. Smith uses an 
output that reflects the (possibly nonlinear) influences of a variety of additional factors.  Others who are 
interested in the effects of a clinical procedure on speech outcomes might want to use a standardized 
instrument as their output measure (such as SSI-3, Riley, 1994).  
     Each of these output measures is appropriate for the particular research needs and no one measure meets 
all the requirements. This is not a point of view that is shared by all workers. Smith (1999), for instance, 
sees serious limitations in using speech event measures. One argument she puts forward is that studying 
stuttering by examining the overt manifestations of the problems (the stuttering events like part-word 
repetitions or prolongations) is analogous to studying volcanoes by examining the shape and type of 
effused eruptive material. In both these examples, the surface form (of language, and of the geological 
forms, respectively) is the output object. Smith points out that examination of surface forms of volcanoes 
did not advance ability to forecast eruptions. Plate tectonics provided the key to the underlying forces that 
allowed eruptions to be forecasted. The underlying dynamic movements of the plates lead to volcanoes at 
the points where they join. The analogy suggests that an underlying dynamic representation of speech 
(rather than events) might provide a unifying framework for understanding stuttering.  This is not an 
argument we would buy (instead we prefer to retain our view that different output measures are suitable for 
different purposes). Moreover, we think the same may apply to the study of volcanoes: An important (and 
tried, tested and confirmed) prediction of plate tectonics is that volcanoes only occur at points where two 
plates abut. Clearly, some output measure that looked at the geographical distribution of volcanoes was 
needed to test this prediction.  
     This article is not concerned with issues in multifactor theory construction per se. It does seek to 
establish, once a multifactor theory has been specified, how a researcher can establish how well the theory 
(or model) fits the data and how that model can be compared with others. Modeling necessarily relies on 
having a theory specified in detail. Current efforts at theory construction in the stuttering area do not meet 
this requirement. For instance, Smith (1999, p.34) is a multifactor models that predict ways in which 
various component factors interact, but offer little in the way of specification of the exact form of that 
interaction (whether by direct or indirect influences as discussed in connection with anxiety). One major 
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goal we hope to achieve is to stimulate authors to offer their theories in more detail (which would be 
welcomed as submissions to Stammering Research). The second major goal is to introduce SEM as an 
approach to discriminate between alternative theories. As there are no detailed and explicit multifactor 
theories at present, we use specified hypothetical models as the basis of our discussion. Before model 
specification, some general remarks about SEM are made.  
2. Introduction II: Structural Equation Modeling and stuttering 
     Recent years have witnessed an unprecedented rate of growth in advanced quantitative techniques that 
are potentially applicable across a wide range of disciplines.  With respect to non-experimental research in 
the social sciences, the development of new methods for data analysis has largely revolved around 
Structural Equation Modeling (SEM).  Indeed, although SEM is mostly used for analysis of data collected 
by non-experimental methods, it is possible to conduct analyses of data obtained using experimental 
designs.  Actually, SEM is a broad class of techniques covering confirmatory factor analysis, time growth 
analysis, multi-level latent modeling, and simultaneous equation modeling. The early origins of SEM can 
be traced back to the technique of path analysis, introduced in the field of biology by Wright (1934). 
However, the field of SEM as we now know it was created by the seminal contributions of Karl J. Jöreskog 
and his colleagues (notably Dag Sörbom), who together managed to integrate the data analytic traditions of 
multiple regression and factor analysis (e.g., Jöreskog, 1969, 1971).  The breakthroughs in statistical theory 
were implemented in the computer program LISREL (LInear Structural RELations; e.g., Jöreskog & 
Sörbom, 1996), which has had a major impact across the social sciences and beyond. 
     The SEM literature has been growing rapidly over the last decade as reflected in the ever-increasing 
number of introductory chapters (e.g., Fife-Schaw, 2000), textbooks (e.g. Kline, 2004; Maruyama, 1998), 
and journal articles (e.g., Muthén, 2002).  The results of a recent review of the relevant literature 
(Hershberger, 2003) showed that: (a) SEM has acquired dominance among multivariate techniques; (b) the 
number of journals publishing SEM articles continues to grow; and (c) ‘Structural Equation Modeling: An 
Interdisciplinary Journal’ has become the primary outlet for the publication of technical developments in 
SEM. The journal contains tutorials by leaders in the field (e.g., Raykov & Marcoulides, 1999), and is a 
particularly useful resource for applied researchers, as is the online discussion group SEMNET 
(http://www.gsu.edu/~mkteer/semnet.html). 
     There are five main reasons for the recent surge in the popularity of SEM. First, it allows for statistical 
analyses that account for measurement error in the dependent and independent variables through the use of 
multiple observed indicators per latent variable. Second, it provides a rigorous approach to model testing, 
which requires careful theoretical development as discussed in the previous section. Third, it is extremely 
flexible as it can accommodate experimental designs, group differences designs, longitudinal designs, and 
multi-level designs, all of which are used in stuttering research. Fourth, it can accommodate tests of 
mediation and moderation (Baron & Kenny, 1986). Fifth, it allows for the statistical testing of multiple 
competing theoretical models (such as the two models proposed earlier about how anxiety could be added 
to CRH). While the typical approach to data analysis involves testing hypotheses based on a particular 
theory, a more powerful approach involves comparing alternative theories and establishing, based on a 
priori criteria and statistical indices, which model best accounts for the data. This elegant approach to 
developing theories and testing hypotheses has been applied in many different domains, including 
occupational psychology (e.g., Earley & Lituchy, 1991), personality (Petrides, Furnham, Jackson & Levine, 
2003), criminological psychology (Levine & Jackson, 2004), and counselling psychology (Quintana & 
Maxell, 1999).  
     The main objective of this article is to introduce the new possibilities that SE modeling offers for the 
analysis of stuttering data. For the purposes of this exposition, we will employ a hypothetical example, 
illustrated in Figure 1 and based on socio-psychological variables that are implicated in stuttering (see 
Furnham & Davies, 2004). First some elementary steps that construct two theories of this process: Model 1 
suggests that cognitive ability is influential in addressing whether a child is bullied which, in turn, 
influences the severity of stuttering (like the linear causation discussed in connection with anxiety and 
CRH). Model 2 differs in suggesting that cognitive ability directly influences the severity of stuttering, in 
addition to its indirect effect mediated via being bullied (in a similar way to the second alternative way of 
adding anxiety to CRH). In everyday terms, the first model maintains that a child with low IQ might be 
more prone to bullying, which then causes anxiety and leads to stuttering (linear causation model). The 
second model assumes IQ affects severity. IQ can also affect the degree to which a child is bullied that will 
then affect stuttering severity. SEM provides techniques that allow the best alternative model of the process 
involving these factors to be determined. 

 346

http://www.gsu.edu/~mkteer/semnet.html


                                                                                           Stammering Research. Vol. 1. 

     Path diagrams, like the one in Figure 1, are pictorial representations of an underlying system of 
mathematical equations. Observed indicators (items or scales) are designated by a box. In Figure 1, each 
latent variable (where a latent variable reflects the relationship between variables) is represented by three 
observed indicators in square boxes. Directional relationships are represented by straight lines with an 
arrowhead pointing toward the endogenous variable. Non–directional relationships (i.e., correlations) are 
represented by curved lines with arrowheads at both ends.  Latent variables are represented by circles or 
ellipses in SEM and can be either exogenous or endogenous.  Exogenous latent variables are ‘upstream’ 
variables that are not influenced by other variables in the model.  Endogenous latent variables are 
‘downstream’ variables that are influenced by other variables (exogenous, endogenous, or both) in the 
model.  For instance, in Figure 1, IQ is an exogenous variable, whereas bullying and severity of stuttering 
are endogenous variables.  
 

Figure 1. Two possible Competing Structural Models of Stuttering that propose a 
relationship between IQ, bullying and stuttering severity. 

 
Model 1 

 
Model 2 

srb prb trb 

 
Bu SS IQ 

vo si co 
srs prs trs 
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Note. IQ = General intelligence factor, vo = vocabulary test, si = similarities test, co = 
comprehension (example scales taken from WAIS – III tests). Bu = bullying, srb = self-
reports bullying, prb = peer-reports of bullying, trb = teacher-reports of bullying. SS = 
Severity of stuttering, Srs = Self-reported severity of stuttering, prs = peer-reported severity 
of stuttering, trs = teacher-reports severity of stuttering. 

Specification 
     The first stage in SEM involves specifying a model. A model is a statistical statement about the 
relationships between variables. Models take different forms, depending on the analytical approach that is 
adopted. In SEM, relationships are specified on the basis of the hypotheses outlined by theory. 
Specification refers to the translation of a theory into a structural model stating specific relationships 
between the variables. These relationships entail parameters that have magnitude and direction (+ / -) and 
can be either fixed or free. Fixed parameters are pre-specified by the researcher, rather than estimated from 
the data, and are usually, but not necessarily, set at zero. Free parameters are estimated from the data and 
are usually, again albeit not necessarily, significantly different from zero. In the example shown in Figure 
1, the direct relationship between IQ and severity of stuttering is a fixed parameter, as it is set to zero in 
model 1 (i.e., no relationship is specified). In model 2, the relationship between IQ and severity of 
stuttering is a free parameter (i.e., estimated from the data).  
      The various parameters in an SEM define its two components, namely the measurement and the latent 
parts of the model. ‘The measurement model is that component of the general model in which latent 
variables are prescribed. Latent variables are unobserved variables implied by the covariances among . . . 
[three] or more indicators’ (Hoyle, 1995, p. 3). Latent variables are often termed factors and are free of the 
random error and uniqueness associated with their observed indicators. Scores on the observed indicators 
comprise common factor variance (i.e., variance shared with the other indicators of the construct), specific 
factor variance (i.e., reliable variance specific to the observed indicator), and measurement error. The 
specific variance and measurement error parts are collectively described as a variable’s uniqueness. 
     In Figure 1 there are three observed indicators (represented by boxes) defining each of the three latent 
variables (represented by circles). It is noted that there are three observed indicators for each latent variable 
in Figure 1. The exact ratio of observed to latent variables remains a topic of debate, and appears to be 
somewhat dependent on the data at hand. In Figure 1, for example, the latent variable ‘severity of 
stuttering’ influences the observed indicators of self, peer, and teacher ratings of stuttering. The underlying 
rationale is that each of these ratings partially reflects the target’s standing on the general latent variable of 
severity of stuttering.   
     One of the main strengths of the SEM approach is that it allows the decomposition of the relationships 
between variables. There are five different types of effects. Direct effects refer to direct relationships 
between variables, whereas indirect effects refer to relationships that are mediated via intervening variables.  

IQ 
 

srb prb trb 

Bu SS 

vo si co 
srs prs trs 
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In both models in Figure 1, IQ has a direct effect on bullying, which is a mediating variable that transmits 
the effect of IQ on severity of stuttering. In addition, it is possible for the relationship between two 
variables to be caused by a third variable, which is referred to as a non-causal relationship due to shared 
antecedents. For example, it could be that the relationship between being bullied and stuttering is caused by 
a third factor. It is also possible to specify nondirectional relationships between variables, which are 
sometimes referred to as unanalyzed prior associations. In the example in Figure 1, it could be that a 
person is bullied because they stutter, or that being bullied results in more stuttering. Lastly, reciprocal 
effects may also be accommodated by allowing variables simultaneously to influence each other. 
Identification 
     A model is said to be identified when there is a single best value or unique solution for each of its 
unknown (free) parameters. If a model is not identified it is possible to find an infinite number of values for 
the parameters that would produce a good fit of the data to the model. Just-identified models possess the 
same number of equations as unknown free parameters. A consequence of this is zero degrees of freedom. 
Under-identified models occur when there are too many parameters to estimate the number of observed 
measures. The consequences of under-identification may include, impossible parameter estimates, fit tests 
that are not valid and large standard errors. Over identified models are those where there are fewer possible 
parameter estimates than possible equations. Perhaps the best example of such a model is the well-known 
multiple regression model. Identified models provide the best evidence in favor of the proposition that the 
theoretical model represents the data, as there is a unique solution to the data.  
     Identification is an important concern in SEM, as the methodology provides the end user with the 
freedom to specify models that are not identified. An SEM is said to be "identified" if the model's 
restrictions and a population covariance matrix imply unique values for the model's parameters. Assessing 
identification is complex, given the complexities of matrix algebra. Fortunately, most computer programs 
provide information in their output if there is a problem regarding identification. Unfortunately, the locus of 
the problem is not specified.  
Estimation 
     Once a model is specified, the next step is to obtain estimates of the free parameters from the data. To 
estimate the model based on the data, SEM programs use iterative algorithms. The matrix based on the 
data, usually the covariance matrix, in SEM is known as S. Taking this matrix SEM software calculates a 
∑  matrix which is the basis of the parameters in the model. SEM software programs compare S and ∑  
iteratively until the similarity between the matrices is maximised.  
     One of a number algorithms can be used to minimize the similarity between S and ∑ . These algorithms 
include Unweighted Least Squares (ULS), Weighted Least Squares (WLS), Generalized Least Squares 
(GLS), and Maximum Likelihood (ML), which is the most efficient and widely used algorithm of all. Each 
algorithm has a fitting function that generates a value indicating the difference between ∑  and S. The 
closer ∑ and S are, the better the estimate.  
     The decision about which algorithm to use can be complex. It depends on the nature of the data and the 
research aims of the study. For example, WLS, GLS, and ML all assume multivariate normality (i.e., the 
assumption that each variable that is considered is normally distributed, but with respect to each other 
variable). ULS is unduly affected by the metric of the variables and usually requires prior standardization. 
This standardization is problematic and should be avoided because standardized covariance (i.e., 
correlation) matrices result in poorly estimated models (Cudeck, 1989). WLS needs an asymptotic 
covariance matrix (an estimate of the large sample covariance matrix used to generate weights) and a 
matrix of correlations to work properly. Current research indicates that the most appropriate estimation 
method in most cases, including those where the multivariate normality assumption has been violated, is 
ML (Olsson, Foss, Troye & Howell, 2000). 
     The estimation of parameter values is achieved by means of an iterative process. This process starts with 
initial estimates that are sequentially adjusted until model fit cannot be improved. The parameter estimates 
after iteration constitute the final solution. It is worth noting that, in some cases, the algorithm may fail to 
explore the entire range of potential values under the fit function and become trapped into a local minimum 
point. Under such circumstances, the resulting estimates will be suboptimal. In complicated models, it is 
always sensible to provide the software with alternative sets of starting values to establish whether the 
resultant solutions converge (this option is not provided by all software). It is also possible for a final 
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solution to contain illogical parameter estimates (e.g., negative variances or correlations over 1.00). These 
are known as Haywood cases and are indicative of ill-fitting or poorly specified models. 
Model fit 
     Once the estimation process has been completed, it is important to assess how well the data fit the 
proposed model. A large number of indices have been developed to evaluate the goodness of fit of a model 
and some attention should be given as to which fit indices should be reported. The most widely reported fit 
index is the χ2. A significant χ2 value indicates a poor fit of the model to the data. The rationale for this 
follows from our earlier discussion of the ∑ and S matrices. The reader will recall that the closer the 
matrices, the better the estimate. It follows from this that one does not want a significant difference 
between the two, as indicated by the χ2  model fit statistic. 
     The reason for this is that ideally S and ∑ will not differ. However, for a test statistic to follow the χ2 
distribution, it is important for the multivariate data to be normally distributed and the sample sizes to be 
large enough to conform to the requirements of asymptotic distribution theory. Due to its distribution, χ2 is 
less likely to be significant in small samples than in large ones. Accordingly, a variety of model fit indices 
have been developed and these may be categorized according to two basic types, absolute versus 
incremental (see, e.g., Hu & Bentler, 1995, 1998, 1999). 
     Two points should be kept in mind in the discussion of fit indices. First, these indices apply to some 
types of SEM, like the examples in Figure 1, but not to others (e.g., tests of factorial invariance; Cheung & 
Rensvold, 2002). Second, SEM values parsimony, which can be operationalized as ‘the ratio of the degrees 
of freedom in the model being tested to the degrees of freedom in the null model’ (Raykov & Marcoulides, 
1999, p. 293). Thus, some fit indices attempt to take parsimony into account by penalizing complex models 
with many free parameters. 
Absolute indices 
     Absolute fit indices attempt to assess how well the theoretical model reproduces the sample data.  The 
Goodness of Fit Index (GFI) compares the specified model to no model at all.  It ranges from 0 to 1, with 
higher values indicating better fit.  The Adjusted GFI (AGFI) introduces an adjustment based on degrees of 
freedom that penalizes model complexity.  It is interpreted in the same way as the GFI. The Standardized 
Root Mean Square Residual (SRMR) expresses the average discrepancy between observed and expected 
correlations across all parameter estimates in a model.  It ranges from 0 to 1, with lower values indicating 
better model fit. 
     A widely used index of absolute fit is the Root Mean Square Error of Approximation (RMSEA), which 
essentially asks “How well would the model, with unknown but optimally chosen parameter values, fit the 
population covariance matrix if it were available?” (Browne & Cudeck, 1993, p. 137-138).  The RMSEA 
expresses fit discrepancy per degree of freedom, thus addressing the parsimony of the model.  It is 
generally insensitive to sample size.  In contrast to most other indices, it is possible to estimate confidence 
intervals (usually, 90%) around the point estimate of the RMSEA.  
Incremental fit indices 
     Incremental fit indices measure the proportionate improvement in fit by comparing a target model with a 
more restricted, nested baseline model (Hu & Bentler, 1999, p.2). Further note, that if two models are 
equivalent except for a subset of free parameters in model one that are fixed in model two, then model one 
is said to be a nested model. The Non-Normed Fit Index (NNFI) is an example of such a fit index. 
Essentially the NNFI compares the specified model with a baseline model (usually an independence model, 
i.e., a model that stipulates that the variables are unrelated. NNFI penalizes model complexity, such that 
complex models with many free parameters have lower NNFI values.  
     Bentler (1990) proposed the Comparative Fit Index (CFI), which is based on the non-central χ2 
distribution and ranges from 0 and 1, with higher values indicating better model fit.  The CFI penalizes 
small samples, thereby taking sample size into account.  
Modification 
     Once model fit has been assessed, researchers may wish to adjust their model to account for aspects of 
the data that do not accord to the theory. This is known as the model modification stage of SEM. It is 
contentious because it involves freeing up previously fixed parameters on a post-hoc data driven basis. For 
example, a researcher may fit the model in Figure 1 and subsequently discover that an additional direct path 
from IQ into severity of stuttering is necessary to improve fit. This modification would result in an 
improvement of model fit. 
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     Modification indices quantify the expected drop in χ2 if a previously fixed parameter is set free in order 
to be estimated from the data and improve the fit of the model. There are three distinct, but asymptotically 
equivalent, modification indices in SEM, viz., the Wald statistic, the Lagrangian Multiplier (LM), and 
Likelihood Ratio (LR). The Wald test estimates the less restricted model and sees if restrictions should be 
added. The LM test estimates the more restricted model, and sees if restrictions should be removed. The LR 
test estimates both models and evaluates the discrepancy in their χ2 values. The LR test requires two 
estimates, but accounts for changes in parameter values between the models.  
     As noted, many are critical of the modification process because it can result in high levels of 
capitalization on chance.  Two strategies are available to avail of the advantages of post-hoc modification 
strategies without shouldering the attendant pitfalls.  First, assuming a sufficient sample size, it is possible 
to split the data randomly into two sets of approximately equal size. The first data set can be used for post-
hoc modifications and model exploration, while the second data set can be used for cross-validation 
purposes.  The second strategy is to collect an independent new dataset and use it to fit the revised model 
including all the post-hoc modifications.  
Modeling strategies 
     A number of different strategies to conduct SEM have been proposed in the literature. Although all 
strategies involve the essential steps of model specification, identification, estimation, and modification, the 
exact manner in which they are carried out can vary very considerably. Perhaps the best known strategy, 
giving excellent results in psychological studies, is known as the Two Step. Step 1 involves the 
development of an individual congeneric model for each latent variable. Observed variables which produce 
goodness of fit in predicting a latent variable are identified. Factor score regression weights (transformed to 
sum to 1) are used to calculate a composite observed variable from these observed variables. A lower 
bound estimate of the reliability of the composite observed variable is Cronbach's alpha, but a better 
measure of reliability can be computed by hand. This is relatively easy to do if there are no error 
covariances (see Gerbing & Anderson, 1988), but can be difficult if there are (see Werts, Rock, Linn & 
Joreskog, 1978). Once the reliability is known, Munck (1979) showed that it is possible to fix both the 
regression coefficients (which reflect the regression of each composite variable on its latent variable) and 
the measurement error variance. At step 2, the overall model is considered. This involves putting each 
latent variable and its associated composite observed variable into the whole model. As with most issues 
there are those who support (Mulaik & Millsap, 2000) and those who refute the use of this method (Hayduk 
& Glaser, 2000).   
Item parceling 
     In some cases, researchers may be unsure as to how to represent their latent variables.  An important 
choice is between using item parcels versus single items.  The sometimes controversial technique of 
parceling involves summing up a number of individual items in order to construct item parcels and use 
them as indicators of the latent variables.  Critics note that, when variables are not truly unidimensional, 
parceling may result in model mis-specification and in the acceptance of models that in fact provide a poor 
fit to the data. On the other hand, MacCallum, Widaman, Zhang and Hong (1999) provide several reasons 
to use item parcels as indicators of the latent factors. They point out that parceled data are more 
parsimonious (i.e., there are fewer parameters to be estimated both locally in defining a construct and 
globally in representing the entire model). Parceled data are also less likely to produce correlated residuals 
or multiple cross-loadings and may lead to reductions in various sources of sampling error. 
     In the delinquency literature it has been noted that the use of item parcels overcomes the extreme 
skewness that is often found in individual items.  Thus, a number of authorities in criminology recommend 
the use of parcels to help achieve multivariate normality (e.g., Farrell & Sullivan, 2000).  It is worth noting 
that the same may apply to stuttering data, particularly in cases of severe skewness. Little, Cunningham, 
Shahar and Widaman (2002) reviewed the use of parceling in the literature and noted that ‘in the end two 
clear conclusions may be drawn from our review of the issues. On the one hand, the use of parceling 
techniques cannot be dismissed out of hand. On the other, the unconsidered use of parceling techniques is 
never warranted’ (p. 171). 
Interactions 
     SEM is not restricted to linear structural relationships, but can also accommodate interactions and 
polynomial effects. Indeed, testing interactions through SEM has advantages over the conventional 
multiple regression approach because SEM overcomes many of the problems that are associated with 
interaction terms in regression models (e.g., low internal consistency, which reduces the power of the 
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corresponding statistical test). There are several approaches to testing interactions through SEM, their main 
differentiating characteristic being how the interaction term is represented and estimated (Schumacker, 
2002; see also Jaccard & Wan, 1995, Moulder & Algina, 2002).  
Criticisms 
     Critics of SEM methodology (notably Cliff, 1983) have drawn attention to a number of contentious 
issues and limitations, foremost among which is the erroneous assumption of some practitioners that 
modeling correlational data can somehow help to establish causal relationships between variables.  This 
criticism perhaps originates from the early use of the term “causal models” to describe SEM analyses.  
     Another criticism is that researchers often fail to consider alternative models, other than their preferred 
one, which could provide an equally good or even superior fit to their data.  The problem is especially 
difficult to resolve in cases where a researcher has to grapple with a number of theoretically conflicting, but 
mathematically equivalent, models (see MacCallum, Wegener, Uchino, & Fabrigar, 1993). Other oft-
quoted limitations of SEM per se or of the manner in which it is applied include the routine violation of the 
assumptions on which the analyses are based, the excessive or uncritical reliance on modification 
procedures, and an unwarranted preoccupation with model fit at the expense of substantive considerations.    
Reporting SEMs 
     A number of texts provide directions on how to report an SEM (e.g., Boomsma, 2000; Hoyle & Panter, 
1995). In general the texts suggest the following. A diagram showing the theoretical relations between the 
elements in the model should be presented in the introduction. This should be much like the one in Figure 
1, although it should only include the latent factors. In the results section, prior to conducting the SEM, the 
strategy adopted (e.g., the Two Step), matrix used (e.g., covariance matrix), and algorithm employed (e.g., 
MLE) should be reported. The fit indices that should be reported remain an issue of debate. The fit criteria 
of Hu and Bentler (1999) have become widely adopted in the cases of path analysis and confirmatory factor 
analysis. It is recommended that a balance be struck between model fit and direct effects. With regard to 
direct effects, the results should contain all the standardized coefficients and their associated p values. 
Correlations between error terms should also be reported with an explanation of why they were set to 
correlate. These values, together with the standardized estimates of the parameters, are reported in a figure, 
much like the one in Figure 1. Finally, the covariance matrix should be included in the appendix, so that 
researchers can reproduce the original solutions of authors.  
Conclusion 
     SEM provides a powerful approach to hypothesis testing. It is becoming increasingly popular and, in 
many cases (even in cognitive psychology where experimentation prevails), it is replacing conventional 
data analytic techniques, such as exploratory factor analysis and multiple regression. Because SEM 
encourages researchers to explicitly state their theories and hypotheses in an a priori manner, it often leads 
to more comprehensive and precise theoretical statements.  The aim of this short exposition was to bring 
this flexible and powerful class of modeling methods to the attention of substantive researchers, in the hope 
that they will prove a useful data analytic tool in the study of the developmental pathways of stuttering. 
Appendix A takes the reader through a LISREL analysis of manufactured data (these data are presented in 
Appendix B).  
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Appendix A 
 
     This Appendix takes readers through the steps involved in a LISREL 8.3 analysis (software published 
by Scientific Software International, Inc.). The problem for analysis was based on the IQ/bullying examples 
used in the body of the text using model one as a basis (it was not possible to test the other model in the 
paper as it did not converge.) As shown in Figure 1, model one has three latent variables (IQ, stuttering 
severity, SS and bullying BU) which correspond to ach (achievement), ss (stuttering severity) and vic 
(victimization) in the current analysis. According to model one, IQ is reflected in vo (vocabulary) si 
(similarities) and co (comprehension) test scores and the equivalent here is that achievement is reflected in 
IQ and GPA scores. In model one, overall stuttering severity (ss) is reflected in self (Srs), peer (Prs) and 
teacher’s (Trs)  reports of severity of stuttering, and here SS is reflected in parent, child and clinical 
(PARENT, CHILD SSITOTAL, respectively) scores.  The final latent variable of bullying (Bu) in model 
one is reflected in self (srb) peer (prb) and teacher (trb) reports of bullying and the measure of bullying here 
(vic) is reflected in peer (VICTIM), parent (VICTIM2) and teacher’s assessments of bullying (SBS). 
 
     The data are made up for this exercise and, therefore, the conclusions from the analysis have no 
meaning. The data are given in Appendix B so that readers can reproduce the analysis if they wish.  The 
data contain the following observed variables (labels are those used in the LISREL analysis that follows). 
 

SSITOTAL  - clinical assessment of stuttering severity - high scores 
   = more severe 

PARENT  - parent report of stuttering severity - high scores = 
   more severe 

CHILD  - child report of stuttering severity -  high scores = more 
severe 

IQ   - score on the Otis-Lennon Mental Abilities Test 
GPA   - grade point average 
SBS   - teacher report of bullying - low scores = bullied a lot  
VICTIM  - peer reports of bullying - high scores = more 

   nominations as bully victim 
VICTIM2  - parent report of bullying - high scores = bullied a lot 

 
     The following is the SIMPLIS syntax used to produce the SEM in LISREL.  
 

Title Testing a Path Model of Stuttering 
 Observed Variables:   SSITOTAL PARENT CHILD IQ  GPA SBS 
VICTIM VICTIM2 
 Covariance Matrix from File Made.cov 
Sample Size: 112 
Latent Variables: 
 ach ss vic 
Relationships: 
 ach -> IQ GPA 
 ss -> PARENT CHILD SSITOTAL 
 vic -> VICTIM VICTIM2 SBS 
 vic = ach 
 ss = vic 
 ss = ach 
Path Diagram 
End of Problem 

 
A description of each of the steps in the SIMPLIS code now follows. The code itself is given in Courier 
font and the comments are in Times New Roman: 

1.  Title Testing a Path Model of Stuttering – the keyword ‘TITLE’ gives a 
name to the analysis for later reference. 

2.  Observed Variables:   SSITOTAL PARENT CHILD  IQ  GPA SBS VICTIM 
VICTIM2 – The command ‘Observed variables’ tells the program that the labels that follow are 
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the observed variables. For instance, the IQ measures are scores on the Otis-Lennon Mental 
Abilities Test 

3.  Covariance Matrix from File Made.cov - This is the basic covariance matrix 
which may be obtained by a package such as SPSS. The covariance matrix has been saved in file 
Made.cov. 

4.  Sample Size: 112 – This tells the computer the number of observation in the sample. A 
sample size of 112 is small for such analyses. It is difficult to give concrete advice as to what 
sample size is appropriate. One way is to take 200 as an absolute minimum, but it should also be 
ensured that the ratio of variables to factors is as high as possible. Naturally, like more 
conventional forms of analysis Power Analysis may serve as a useful guide.  

5.  Latent Variables: ach ss vic – This line identifies which are the latent variables. 
There are three here, achievement (ach), severity of stuttering (ss) and victimization (vic). 

6.  ss -> PARENT CHILD SSITOTAL – This line indicates that the latent variable severity of 
stuttering ‘ss’, causes PARENT, CHILD and SSITOTAL (parent, child and clinical assessment of 
severity of stuttering, respectively). 

7.  vic -> VICTIM VICTIM2 SBS This line indicates that the latent variable ‘vic’ 
(victimization), causes VICTIM VICTIM2 SBS (peer, parent and teacher indications about 
bullying). 

8.  vic = ach This line indicates that the latent variable ‘vic’ (victim of bullying), causes the 
latent variable ach. 

9.  ss = vic - This line indicates that the latent variable ‘ss’ (severity of stuttering) causes the 
latent variable ‘vic’. 

10.ss = ach - This line tells the program that latent severity of stuttering is caused by 
achievement 

11.Path Diagram This line tells the program to produce a path diagram. 
12.End of Problem This line tells the program that it is the end of the problem. 

 
 
LISREL then produces the following output (comments that have been added for explanation are given in 
bold Times New Roman font):  
 
                                DATE: 12/20/2004 
                                  TIME: 18:07 
                                L I S R E L  8.30 
                                       BY 
                         Karl G. Jôreskog & Dag Sôrbom 
                    This program is published exclusively by 
                    Scientific Software International, Inc. 
                       7383 N. Lincoln Avenue, Suite 100 
                        Lincolnwood, IL 60712, U.S.A.  
            Phone: (800)247-6113, (847)675-0720, Fax: (847)675-2140 
     Copyright by Scientific Software International, Inc., 1981-2000  
         Use of this program is subject to the terms specified in the 
                        Universal Copyright Convention. 
                          Website: www.ssicentral.com 
The following lines were read from file C:\LISREL83\DATA\STUT.SPL: 
Title Testing a Path Model of Stuttering 
Observed Variables:   SSITOTAL PARENT CHILD  IQ  GPA SBS VICTIM VICTIM2 
Covariance Matrix from File Made.cov 
Sample Size: 112 
Latent Variables: 
 ach ss vic 
Relationships: 
ach -> IQ GPA 
 ss -> PARENT CHILD SSITOTAL 
 vic -> VICTIM VICTIM2 SBS 
   
 vic = ach 
 ss = vic 
 ss = ach 
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Path Diagram 
 End of Problem 
 Sample Size =   112 
 
Testing a Path Model of Stuttering                                              
 
         Covariance Matrix to be Analyzed         
 
            SSITOTAL     PARENT      CHILD        SBS     VICTIM    VICTIM2    
            --------   --------   --------   --------   --------   -------- 
 SSITOTAL      68.65 
   PARENT      38.99      40.27 
    CHILD      29.91      21.19      27.62 
      SBS     -21.73     -13.11      -8.61      14.75 
   VICTIM      15.27       8.77       6.26      -5.16       6.46 
  VICTIM2       6.00       3.94       2.55      -2.80       1.66       1.38 
       IQ     -83.65     -58.84     -42.09      27.95     -17.62      -7.81 
      GPA      -4.95      -3.66      -2.47       1.67      -1.02      -0.43 
 
         Covariance Matrix to be Analyzed         
 
                  IQ        GPA    
            --------   -------- 
       IQ     170.13 
      GPA       7.83       0.70 
  
Testing a Path Model of Stuttering                                              
 Number of Iterations = 35 
 LISREL Estimates (Maximum Likelihood)                
         Measurement Equations 
Below are the measurement equations  
 SSITOTAL = 7.77*ss, Errorvar.= 8.32 , R² = 0.88 
                               (2.19)            
                                3.81             
  
   PARENT = 5.15*ss, Errorvar.= 13.72, R² = 0.66 
           (0.42)              (2.08)            
            12.38               6.61             
  
    CHILD = 3.76*ss, Errorvar.= 13.45, R² = 0.51 
           (0.39)              (1.92)            
            9.70                7.00             
  
      SBS = 2.90*vic, Errorvar.= 6.34 , R² = 0.57 
                                (1.05)            
                                 6.04             
  
   VICTIM =  - 1.96*vic, Errorvar.= 2.62 , R² = 0.59 
              (0.24)               (0.45)            
              -8.01                 5.87             
  
  VICTIM2 =  - 0.85*vic, Errorvar.= 0.65 , R² = 0.53 
              (0.11)               (0.10)            
              -7.54                 6.27             
  
  
       IQ = 11.44*ach, Errorvar.= 39.16, R² = 0.77 
           (1.02)                (8.69)            
            11.25                 4.51             
  
      GPA = 0.68*ach, Errorvar.= 0.23  , R² = 0.67 
           (0.067)              (0.040)            
            10.17                5.84              
  
These are the relationships between the latent variables.  
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         Structural Equations 
 
       ss =  - 0.46*vic - 0.59*ach, Errorvar.= 0.0098, R² = 0.99 
              (0.12)     (0.12)               (0.037)            
              -3.78      -5.01                 0.26              
  
      vic = 0.80*ach, Errorvar.= 0.36 , R² = 0.64 
           (0.11)               (0.12)            
            6.97                 3.12             
  
 
         Reduced Form Equations 
 
       ss =  - 0.96*ach, Errorvar.= 0.088, R² = 0.91 
              (0.082)                                 
              -11.60                                 
  
      vic = 0.80*ach, Errorvar.= 0.36, R² = 0.64 
           (0.11)                                 
            6.97                                 
 
         Correlation Matrix of Independent Variables  
 
                 ach    
            -------- 
                1.00 
  
 
         Covariance Matrix of Latent Variables    
 
                  ss        vic        ach    
            --------   --------   -------- 
       ss       1.00 
      vic      -0.93       1.00 
      ach      -0.96       0.80       1.00 
 
These are the ‘Goodness of Fit Indices’ 
                           Goodness of Fit Statistics 
 
                             Degrees of Freedom = 17 
               Minimum Fit Function Chi-Square = 25.31 (P = 0.088) 
     Normal Theory Weighted Least Squares Chi-Square = 24.55 (P = 0.11) 
                 Estimated Non-centrality Parameter (NCP) = 7.55 
              90 Percent Confidence Interval for NCP = (0.0 ; 24.86) 
  
                        Minimum Fit Function Value = 0.23 
                Population Discrepancy Function Value (F0) = 0.068 
               90 Percent Confidence Interval for F0 = (0.0 ; 0.22) 
             Root Mean Square Error of Approximation (RMSEA) = 0.063 
             90 Percent Confidence Interval for RMSEA = (0.0 ; 0.11) 
               P-Value for Test of Close Fit (RMSEA < 0.05) = 0.32 
  
                  Expected Cross-Validation Index (ECVI) = 0.56 
             90 Percent Confidence Interval for ECVI = (0.50 ; 0.72) 
                         ECVI for Saturated Model = 0.65 
                        ECVI for Independence Model = 5.69 
  
  Chi-Square for Independence Model with 28 Degrees of Freedom = 615.41 
                            Independence AIC = 631.41 
                                Model AIC = 62.55 
                              Saturated AIC = 72.00 
                            Independence CAIC = 661.16 
                               Model CAIC = 133.20 
                             Saturated CAIC = 205.87 
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                          Normed Fit Index (NFI) = 0.96 
                        Non-Normed Fit Index (NNFI) = 0.98 
                     Parsimony Normed Fit Index (PNFI) = 0.58 
                        Comparative Fit Index (CFI) = 0.99 
                        Incremental Fit Index (IFI) = 0.99 
                         Relative Fit Index (RFI) = 0.93 
  
                             Critical N (CN) = 147.56 
  
  
                      Root Mean Square Residual (RMR) = 0.78 
                             Standardized RMR = 0.033 
                        Goodness of Fit Index (GFI) = 0.95 
                   Adjusted Goodness of Fit Index (AGFI) = 0.89 
                  Parsimony Goodness of Fit Index (PGFI) = 0.45 
 
These are the suggested parameters to add, i.e., the modification indices. 
 
        The Modification Indices Suggest to Add the 
  Path to  from      Decrease in Chi-Square    New Estimate 
 SSITOTAL  vic                 7.9                -5.85 
 
 The Modification Indices Suggest to Add an Error Covariance 
  Between    and     Decrease in Chi-Square    New Estimate 
 VICTIM    SSITOTAL            9.6                 2.30 
 
 
       The Problem used    12760 Bytes (=  0.0% of Available Workspace) 
 
                           Time used:    0.047 Seconds 
 
 
Path analysis 

 
 

 
The path diagram with standardized estimates is produced in the final step in the analysis. Note 

that all direct effects are significant with the exception of SS to SSITOTAL and the latent variable relating 
vic to SBS. The latent variable SS reflects estimates of child and parent indications about severity of the 
problem, but not clinical indications about severity of stuttering. The model indicates that both achievement 
and victimization influence severity of stuttering, and that achievement has both a direct effect on severity 
of stuttering and an indirect effect that is mediated by victimization. This model was estimated using a 
covariance matrix with maximum likelihood estimation. It appeared to fit the data relatively well 
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(according to the criteria of Hu & Bentler, 1999) although it is limited by the small sample size (χP

2
P = 24.55, 

df=17, P =0.11, RMSEA=0.06; Standardized RMR = 0.03, CFI = 0.99, NNFI = 0.98). 
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Appendix B 
 
Fictitious data compiled for modeling purposes only. These are included so that readers may reproduce the 
results or practice developing different forms of SEM analysis. 
SSI = clinical assessment of stuttering severity - high scores = more severe; Parent = parent report of 
stuttering severity - high scores = more severe; Child = child report of stuttering severity - high scores = 
more severe; IQ = score on the Otis-Lennon Mental Abilities Test; GPA = grade point average; SBS (social 
behavior at school checklist)  = teacher report of bullying - low scores = more bullying; Victim1 = peer 
reports of bullying - high scores = more nominations as bully victim; Victim2 = parent report of bullying - 
high score = more bullying.  
 
 

SSI Parent Child IQ GPA SBS Victim1 Victim2 
30 27 28 79 1.67 29 1 2 
23 21 20 108 4.00 38 1 1 
14 10 11 131 3.75 42 0 1 
25 10 25 100 2.50 40 2 1 
18 20 19 107 3.50 41 1 1 
12 13 17 115 4.00 42 0 1 
15 14 19 92 2.23 42 1 2 
8 10 8 111 3.00 41 1 1 
9 17 17 95 3.00 40 0 1 
6 14 13 106 3.75 41 0 1 
9 9 9 107 3.00 42 1 2 

29 25 22 88 2.25 38 3 3 
19 18 15 109 2.25 42 1 3 
19 14 8 102 2.75 40 2 1 
25 20 34 81 2.00 39 3 2 
36 23 20 93 2.00 35 7 2 
19 17 18 106 2.75 38 1 1 
30 20 20 97 2.67 25 4 5 
21 10 20 112 3.00 42 2 2 
12 15 15 95 2.75 40 0 1 
29 39 33 86 1.00 33 1 2 
24 34 22 90 2.50 40 0 3 
15 18 13 118 3.00 42 1 2 
13 20 21 115 3.75 42 0 1 
11 19 16 105 2.75 40 0 1 
22 26 18 81 1.50 41 5 2 
35 35 26 83 .67 30 6 3 
27 22 29 85 1.75 40 1 3 
24 19 25 83 2.75 38 0 5 
20 19 16 105 2.50 39 1 1 
8 18 20 115 4.00 42 1 2 

29 24 30 102 2.75 42 3 3 
28 32 17 81 1.50 40 3 2 
16 13 15 118 3.00 40 1 2 
9 17 15 120 4.00 42 0 1 
8 13 11 129 3.75 41 1 2 

11 19 9 111 3.00 40 0 2 
19 20 10 100 2.50 35 0 2 
11 17 22 109 2.25 40 1 1 
25 25 29 81 2.00 39 1 1 
12 20 17 112 3.00 42 1 2 
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31 22 18 93 2.00 40 2 1 
29 30 22 86 1.00 36 5 3 
30 26 24 85 2.50 32 5 3 
18 25 12 97 2.67 42 1 1 
37 23 22 85 1.75 31 7 2 
28 26 22 79 1.67 35 3 4 
20 19 15 95 3.00 42 2 4 
33 26 24 90 2.50 40 7 2 
34 27 24 83 .67 39 8 2 
34 25 22 92 2.23 38 4 3 
16 14 19 115 3.75 42 2 2 
28 26 22 88 2.25 40 2 2 
18 10 13 106 2.75 42 2 1 
10 15 13 108 4.00 41 0 1 
11 14 11 115 3.75 41 0 2 
17 19 16 106 3.75 40 2 3 
25 27 23 124 2.00 37 6 3 
24 27 14 95 2.75 36 2 3 
25 15 13 85 2.75 32 2 4 
22 19 21 99 3.50 42 1 2 
28 24 21 99 2.67 40 8 3 
28 22 21 95 2.75 36 4 3 
25 24 18 92 3.50 39 2 2 
36 32 25 83 2.75 30 9 5 
22 20 19 95 1.50 40 2 2 
25 23 21 92 2.23 39 4 3 
23 21 15 105 2.75 35 1 2 
30 24 23 85 1.50 34 2 3 
8 15 16 115 4.00 42 0 1 

14 17 15 111 3.00 42 4 1 
18 16 18 112 3.00 41 1 2 
11 15 17 118 3.00 42 0 2 
23 18 14 100 2.50 36 0 3 
25 32 21 95 1.50 36 2 3 
27 22 23 88 2.25 31 1 2 
24 27 26 86 1.00 42 0 2 
29 30 22 85 1.75 40 4 3 
10 13 17 115 3.75 42 1 1 
8 10 12 129 3.75 41 0 2 

15 22 11 106 2.75 40 2 1 
31 24 21 90 2.50 30 10 4 
15 25 23 99 3.00 41 4 2 
34 28 23 81 2.00 31 9 5 
32 35 25 79 1.67 33 6 4 
30 28 24 93 2.00 40 5 3 
18 19 18 109 2.25 42 2 2 
26 25 23 83 2.75 40 4 3 
28 26 23 85 2.50 38 6 2 
26 25 17 85 2.75 40 3 3 
33 30 25 83 .67 35 5 4 
19 20 20 105 2.75 42 4 1 
19 16 18 115 3.00 40 0 2 
18 20 19 115 3.00 39 1 1 
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31 29 25 83 .67 31 6 6 
9 15 18 115 4.00 42 1 1 

25 22 22 99 3.00 40 2 2 
11 19 15 115 4.00 42 0 2 
12 15 16 115 3.75 42 0 3 
24 21 21 99 2.75 41 4 2 
29 26 22 88 2.25 40 5 3 
23 20 19 109 2.25 38 2 2 
26 22 22 100 2.50 35 0 3 
40 32 29 85 1.75 29 10 6 
30 25 22 93 2.00 37 6 5 
31 22 22 90 2.50 36 5 2 
20 15 18 118 3.00 41 0 1 
30 33 23 95 1.50 35 0 4 
29 22 23 92 3.50 38 5 3 
28 30 21 92 2.23 38 4 3 
35 29 30 86 1.00 30 8 4 
25 19 22 97 2.67 40 2 2 
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